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ABSTRACT
Peer incentivization (PI) is a recent approach, where all agents learn
to reward or to penalize each other in a distributed fashion which
often leads to emergent cooperation. Current PI mechanisms implic-
itly assume a flawless communication channel in order to exchange
rewards. These rewards are directly integrated into the learning
process without any chance to respond with feedback. Further-
more, most PI approaches rely on global information which limits
scalability and applicability to real-world scenarios, where only
local information is accessible. In this paper, we propose Mutual

Acknowledgment Token Exchange (MATE), a PI approach defined
by a two-phase communication protocol to mutually exchange
acknowledgment tokens to shape individual rewards. Each agent
evaluates the monotonic improvement of its individual situation
in order to accept or reject acknowledgment requests from other
agents. MATE is completely decentralized and only requires local
communication and information. We evaluate MATE in three social
dilemma domains. Our results show that MATE is able to achieve
and maintain significantly higher levels of cooperation than pre-
vious PI approaches. In addition, we evaluate the robustness of
MATE in more realistic scenarios, where agents can defect from
the protocol and where communication failures can occur.
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1 INTRODUCTION
Many potential AI scenarios like autonomous driving [30], smart
grids [8], or general IoT scenarios [5], where multiple autonomous
systems coexist within a shared environment, can be naturally
modeled as self-interested multi-agent system (MAS) [4, 20]. In self-
interested MAS, each autonomous system or agent attempts to
achieve an individual goal while adapting to its environment, i.e.,
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Figure 1: MATE protocol example. (a) If agent 1 estimates
a monotonic improvement MI1 (𝑟𝑡,1) ≥ 0 of its situation, it
"thanks" its neighbor agents 2 and 3 by sending an acknowl-
edgment request 𝑥1 > 0 as reward. (b) Agent 2 and 3 check
if the request 𝑥1 monotonically improves their own situa-
tion along with their own respective reward. If so, a positive
reward (e.g., 𝑦2 = +𝑥1) is sent back as a response. If not, a
negative reward (e.g., 𝑦3 = −𝑥1) is sent back.

other agents’ behavior [10]. Conflict and competition are common
in such systems due to opposing goals or shared resources [20, 26].

In order to maximize social welfare or efficiency in such MAS,
all agents need to cooperate which requires them to refrain from
selfish and greedy behavior for the greater good. The tension be-
tween individual and collective rationality is typically modeled as
social dilemma (SD) [28]. SDs can be extended to sequential social

dilemmas (SSD) to model more realistic scenarios [17].
Multi-agent reinforcement learning (MARL) has become popular

to model individually rational agents in SDs and SSDs to examine
emergent behavior [4, 17, 24–26]. The goal of each agent is defined
by an individual reward function. Non-cooperative game theory
and empirical studies have shown that naive MARL approaches
commonly fail to learn cooperative behavior due to individual self-
ishness and lacking benevolence towards other agents, which leads
to defective behavior [1, 10, 17, 37].

One reason formutual defection is non-stationarity, where naively
learning agents do not consider the learning dynamics of other
agents but only adapt reactively [4, 12, 16, 35]. This can cause
agents to defect from mutual cooperation as studied extensively
for the prisoner’s dilemma [1, 10, 17, 28]. To mitigate this problem,
some approaches propose to adapt the learning rate based on the
outcome [3, 23, 40] or to integrate information of other agents’
adaptation like gradients or opponent models [10, 15, 19]. These
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approaches are either tabular or require full observability in order
to observe each other’s behavior, thus do not scale to complex do-
mains. Furthermore, some approaches require knowledge about
other agents’ objective to estimate their degree of adaptation which
could violate privacy [10, 19].

Another reason for mutual defection is the reward structure

which was found to be crucial for social intelligence [17, 31]. Prior
work has shown that adequate reward formulations can lead to
emergent cooperation in particular domains [2, 6, 7, 13, 27]. How-
ever, finding an appropriate reward formulation for any domain
is generally not trivial. Recent approaches adapt the reward dy-
namically to drive all agents towards cooperation [14, 15, 42]. Peer
incentivization (PI) is a distributed approach, where all agents learn
to reward or to penalize each other which often leads to emer-
gent cooperation [22, 29, 38, 42]. Current PI mechanisms implicitly
assume a flawless communication channel in order to exchange
rewards. These rewards are assumed to be simply integrated into
the learning process without any chance to respond with feedback.
Furthermore, most PI approaches rely on global information like
joint actions [42], a central market function [29], or publicly avail-
able information [38] which limits scalability and applicability to
real-world scenarios, where only local information is accessible.

In this paper, we propose Mutual Acknowledgment Token Ex-

change (MATE), a PI approach defined by a two-phase communi-
cation protocol as shown in Fig. 1 to mutually exchange acknowl-
edgment tokens to shape individual rewards. Each agent evaluates
the monotonic improvement of its individual situation in order to
accept or reject acknowledgment requests from other agents. MATE
is completely decentralized and only requires local communication
and information without knowing the objective of other agents or
any public information. Our contributions include:
• The concept of monotonic improvement, where each agent
locally evaluates its individual situation to estimate the reli-
ability of the environment, i.e., other agents’ behavior.
• The MATE communication protocol and reward formulation
using monotonic improvement estimation.
• An empirical evaluation of MATE in three SD domains and a
comparison with other PI approaches w.r.t. different metrics.
Our results show that MATE is able to achieve and maintain
significantly higher levels of cooperation than previous PI
approaches. In addition, we evaluate the robustness of MATE
in more realistic scenarios, where agents can defect from the
protocol and where communication failures can occur.

2 BACKGROUND
2.1 Problem Formulation
We formulate self-interested MAS as partially observable stochastic
game 𝑀 = ⟨D,S,A,P,R,Z,Ω⟩, where D = {1, ..., 𝑁 } is a set of
agents 𝑖 , S is a set of states 𝑠𝑡 at time step 𝑡 , A = ⟨A1, ...,A𝑁 ⟩ =
⟨A𝑖 ⟩𝑖∈D is the set of joint actions 𝑎𝑡 = ⟨𝑎𝑡,𝑖 ⟩𝑖∈D , P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 )
is the transition probability, ⟨𝑟𝑡,𝑖 ⟩𝑖∈D = R(𝑠𝑡 , 𝑎𝑡 ) ∈ R is the joint
reward, Z is a set of local observations 𝑧𝑡,𝑖 for each agent 𝑖 , and
Ω(𝑠𝑡 , 𝑎𝑡 ) = 𝑧𝑡+1 = ⟨𝑧𝑡+1,𝑖 ⟩𝑖∈D ∈ Z𝑁 is the subsequent joint ob-
servation. Each agent 𝑖 maintains a local history 𝜏𝑡,𝑖 ∈ (Z × A𝑖 )𝑡 .
𝜋𝑖 (𝑎𝑡,𝑖 |𝜏𝑡,𝑖 ) is the action selection probability represented by the
individual policy of agent 𝑖 . In addition, we assume each agent 𝑖 to

have a neighborhood N𝑡,𝑖 ⊆ D − {𝑖} of other agents at every time
step 𝑡 which is domain dependent as suggested in [43].

𝜋𝑖 is evaluated with a value function𝑉 𝜋
𝑖
(𝑠𝑡 ) = E𝜋 [𝐺𝑡,𝑖 |𝑠𝑡 ] for all

𝑠𝑡 ∈ S, where𝐺𝑡,𝑖 =
∑∞
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘,𝑖 is the individual and discounted
return of agent 𝑖 ∈ D with discount factor 𝛾 ∈ [0, 1) and 𝜋 =

⟨𝜋 𝑗 ⟩𝑗 ∈D is the joint policy of the MAS. The goal of agent 𝑖 is to
find a best response 𝜋∗

𝑖
with 𝑉 ∗

𝑖
= 𝑚𝑎𝑥𝜋𝑖𝑉

⟨𝜋𝑖 ,𝜋−𝑖 ⟩
𝑖

for all 𝑠𝑡 ∈ S,
where 𝜋−𝑖 is the joint policy without agent 𝑖 . In practice, the global
state 𝑠𝑡 is not directly observable for any agent 𝑖 such that 𝑉𝑖 is
approximated with local information, i.e., 𝜏𝑡,𝑖 instead [14, 17, 22, 26].

We define the efficiency of a MAS or utilitarian metric (U) by the
sum of all individual rewards until time step 𝑇 :

𝑈 =
∑︁
𝑖∈D

𝑅𝑖 (1)

where 𝑅𝑖 =
∑𝑇−1
𝑡=0 𝑟𝑡,𝑖 is the undiscounted return or sum of rewards

of agent 𝑖 starting from start state 𝑠0.

2.2 Multi-Agent Reinforcement Learning
We focus on decentralized or independent learning, where each
agent 𝑖 optimizes its policy 𝜋𝑖 based on local information like 𝜏𝑡,𝑖 ,
𝑎𝑡,𝑖 , 𝑟𝑡,𝑖 , 𝑧𝑡+1,𝑖 (and optionally information obtained from its neigh-
borhood N𝑡,𝑖 ) using reinforcement learning (RL) techniques, e.g.,
policy gradient methods as explained in Section 2.3 [10, 35, 43].
Naive (independent) learning introduces non-stationarity due to
simultaneously adapting agents which continuously changes the
environment dynamics [12, 16, 20]. This can cause naive learners
to learn overly greedy and exploitative policies which defect from
any cooperative behavior [10, 17].

2.3 Policy Gradient Reinforcement Learning
Policy gradient RL is a popular approach to approximate best re-
sponses 𝜋∗

𝑖
for each agent 𝑖 [10, 21, 42]. A function approximator

𝜋𝑖,𝜃𝑖 ≈ 𝜋∗
𝑖
with parameters 𝜃𝑖 is trained with gradient ascent on an

estimate of 𝐽 = E𝜋 [𝐺0,𝑖 ] [41]. Most policy gradient methods use
gradients 𝑔 of the following form [34]:

𝑔 = (𝐺𝑡,𝑖 − 𝑏𝑖 (𝑠𝑡 ))∇𝜃𝑖 log𝜋𝑖,𝜃𝑖 (𝑎𝑡,𝑖 |𝜏𝑡,𝑖 ) (2)

where 𝑏𝑖 (𝑠𝑡 ) is some state-dependent baseline. In practice, 𝑏𝑖 (𝑠𝑡 )
is replaced by a value function approximation 𝑉𝑖,𝜔𝑖

(𝜏𝑡,𝑖 ) ≈ 𝑉 𝜋
𝑖
(𝑠𝑡 )

which is learned with parameter vector 𝜔𝑖 [10]. For simplicity, we
omit the parameter indices 𝜃𝑖 , 𝜔𝑖 and write 𝜋𝑖 , 𝑉𝑖 instead.

3 RELATEDWORK
MARL is a long standing research field with rapid progress and
success in challenging domains [4, 20, 35, 39]. Different studies
have been conducted on various complex SSD domains, where
interesting phenomena like group hunting, attacking and dodging,
or flocking have been observed [17, 24–26]. Independent MARL
like naive learning has been widely used in most studies to model
agents with individual rationality [10, 35].

Non-stationarity of naive learning is one reason why agents fail
to learn cooperative behavior in SDs [4, 12, 16, 20, 35]. To mitigate
this issue, different learning rates can be used depending on the
outcome [3, 23, 40]. Another approach is to integrate "opponent
awareness" into the learning rule by using or approximating other
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agents’ gradients [10, 19]. For that, the objectives and histories of
other agents’ need to be known, thus requiring full observability.
Furthermore, higher order derivatives (at least second order) are
required which is computationally expensive for function approxi-
mators with many learnable parameters like deep neural networks.

PI approaches have been introduced recently to encourage co-
operative behavior in a distributed fashion via additional rewards.
Multi-agent Gifting has been proposed in [22], which extends the
action space of each agent 𝑖 with a gifting action to give a positive
reward to other agents 𝑗 ∈ N𝑡,𝑖 . Learning to Incentivize Other learn-
ing agents (LIO) is a related approach, which learns an incentive
function for each agent 𝑖 that conditions on the joint action of all
other agents 𝑗 ≠ 𝑖 (thus assuming full observability) in order to
compute nonnegative incentive rewards for them [42]. Both Gift-
ing and LIO are unidirectional PI approaches, where agents have
neither the ability to respond nor to penalize each other.

[29] devised a market-based PI approach, where the action space
is extended by joint market actions to enable bilateral agreements
between agents. A central market function is required which redis-
tributes rewards depending on selling-buying relationships. This
approach is intractable for large and complex scenarios because of
the exponential growth of the individual action space, since each
agent has to additionally decide on a joint market action. Further-
more, this approach does not enable penalization of agents. Another
approach based on public sanctioning has been proposed in [38].
Agents can reward or penalize each other which is made public to
all other agents. Learning is conditioned on these public sanction-
ing events and agents can decide based on known group behavior
patterns, whether to reward or to penalize other agents’ behavior.

Direct reciprocity (DR) is an alternative approach to emergent
cooperation in evolutionary settings [36]. Agents in a population
can choose either to cooperate or defect based on previous interac-
tions and the probability of future interactions. Thus, DR requires
full observability of all other agents’ actions within an interaction
and a clear notion of cooperation and defection which can only be
assumed for simple games [17, 26].

4 MUTUAL ACKNOWLEDGMENT TOKEN
EXCHANGE (MATE)

We assume a decentralized MARL setting as formulated in Algo-
rithm 1, where at every time step 𝑡 each agent 𝑖 with history 𝜏𝑡,𝑖 , pol-
icy approximation 𝜋𝑖 , and value function approximation𝑉𝑖 observes
its neighborhood N𝑡,𝑖 and executes an action 𝑎𝑡,𝑖 ∼ 𝜋𝑖 (𝑎𝑡,𝑖 |𝜏𝑡,𝑖 )
in state 𝑠𝑡 . After all actions 𝑎𝑡 ∈ A have been executed, the
environment transitions into a new state 𝑠𝑡+1 ∼ P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 )
which is observed by each agent 𝑖 through reward 𝑟𝑡,𝑖 and ob-
servation 𝑧𝑡+1,𝑖 . All agents collect their respective experience tuple
𝑒𝑡,𝑖 = ⟨𝜏𝑡,𝑖 , 𝑎𝑡,𝑖 , 𝑟𝑡,𝑖 , 𝑧𝑡+1,𝑖 ⟩ for PI [22, 29, 42] and independent adap-
tation of 𝜋𝑖 and 𝑉𝑖 [10, 17, 26].

4.1 Monotonic Improvement
After obtaining their respective experience tuples 𝑒𝑡,𝑖 , all agents can
evaluate the monotonic improvement of their individual situation
with a metric MI

𝑒𝑡,𝑖 ,𝑉̂𝑖
or MI𝑖 for short based on local information,

i.e., rewards 𝑟𝑡,𝑖 , histories 𝜏𝑡,𝑖 , and messages exchanged with other
agents 𝑗 ∈ N𝑡,𝑖 . Given some arbitrary reward 𝑟𝑡,𝑖 , which could be

Algorithm 1 Multi-Agent Reinforcement Learning with MATE

1: Initialize parameters for 𝜋𝑖 and 𝑉𝑖 for all agents 𝑖 ∈ D.
2: for episode𝑚 = 1, 𝐸 do
3: Sample 𝑠0 and set 𝜏0,𝑖 for all agents 𝑖 ∈ D
4: for time step 𝑡 = 0,𝑇 − 1 do
5: for agent 𝑖 ∈ D do ⊲ Decision making in parallel
6: Observe neighborhood N𝑡,𝑖
7: 𝑎𝑡,𝑖 ∼ 𝜋𝑖 (𝑎𝑡,𝑖 |𝜏𝑡,𝑖 )
8: 𝑎𝑡 ← ⟨𝑎𝑡,𝑖 ⟩𝑖∈D
9: 𝑠𝑡+1 ∼ P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 )
10: 𝑧𝑡+1 ← Ω(𝑠𝑡 , 𝑎𝑡 )
11: ⟨𝑟𝑡,𝑖 ⟩𝑖∈D ← R(𝑠𝑡 , 𝑎𝑡 )
12: for agent 𝑖 ∈ D do ⊲ Communication in parallel
13: 𝑒𝑡,𝑖 ← ⟨𝜏𝑡,𝑖 , 𝑎𝑡,𝑖 , 𝑟𝑡,𝑖 , 𝑧𝑡+1,𝑖 ⟩
14: 𝑟MATE

𝑡,𝑖
← MATE(MI𝑖 ,𝑉𝑖 ,N𝑡,𝑖 , 𝜏𝑡,𝑖 , 𝑒𝑡,𝑖 ) (See Algo-

rithm 2)
15: 𝑒𝑡,𝑖 ← ⟨𝜏𝑡,𝑖 , 𝑎𝑡,𝑖 , 𝑟MATE

𝑡,𝑖
, 𝑧𝑡+1,𝑖 ⟩

16: Update 𝜏𝑡,𝑖 to 𝜏𝑡+1,𝑖 and store 𝑒𝑡,𝑖
17: for agent 𝑖 ∈ D do ⊲ Update in parallel
18: Update 𝜋𝑖 and 𝑉𝑖 using all 𝑒𝑡,𝑖 of episode𝑚

either the original reward 𝑟𝑡,𝑖 or some shaped reward, agent 𝑖 can
assume a monotonic improvement of its situation whenMI𝑖 (𝑟𝑡,𝑖 ) ≥
0. Note that we consider the case of MI𝑖 (𝑟𝑡,𝑖 ) = 0 as monotonic
improvement in particular to encourage agents to maintain their
cooperative behavior instead of falling back to defective strategies.

MI𝑖 represents a heuristic local reliability measure to predict if
an agent 𝑖 can rely on its environment represented by other agents
𝑗 ∈ N𝑡,𝑖 without loosing performance. Since MI𝑖 can be measured
online, agent 𝑖 is able to react accordingly at any time step by either
encouraging other agents 𝑗 ifMI𝑖 (𝑟𝑡,𝑖 ) ≥ 0 to reinforce its situation
or by discouraging them if MI𝑖 (𝑟𝑡,𝑖 ) < 0.

In this paper, we regard a reward-based and a temporal difference

(TD)-based approach to compute MI𝑖 .
The reward-based approach computes MI𝑖 = MI

rew

𝑖
as follows:

MI
rew

𝑖 (𝑟𝑡,𝑖 ) = 𝑟𝑡,𝑖 − 𝑟𝑡,𝑖 (3)

where 𝑟𝑡,𝑖 = 1
𝑡

∑𝑡−1
𝑘=0 𝑟𝑘,𝑖 is the average of all (shaped) rewards before

time step 𝑡 . MI
rew

𝑖
estimates the expected short-term improvement

of agent 𝑖 , i.e., how 𝑟𝑡,𝑖 compares to all rewards obtained so far.
The TD-based approach computes MI𝑖 = MI

TD

𝑖
as follows:

MI
TD

𝑖 (𝑟𝑡,𝑖 ) = 𝑟𝑡,𝑖 + 𝛾𝑉𝑖 (𝜏𝑡+1,𝑖 ) −𝑉𝑖 (𝜏𝑡,𝑖 ) (4)

which corresponds to the TD residual w.r.t. to some arbitrary reward
𝑟𝑡,𝑖 and estimates the expected long-term improvement of agent 𝑖 ,
i.e., how 𝑟𝑡,𝑖 and 𝜏𝑡+1,𝑖 improve or degrade the situation of agent 𝑖
w.r.t. future time steps [32, 33].

Note that bothMI
rew

𝑖
andMI

TD

𝑖
only depend on local information

like the reward 𝑟𝑡,𝑖 , the value function 𝑉𝑖 , or the experience tuple
𝑒𝑡,𝑖 and enable efficient online evaluation at every time step.

4.2 MATE Protocol and Reward
MATE defines a two-phase communication protocol consisting of
a request phase and a response phase as shown in Fig. 1.
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In the request phase (Fig. 1a), each agent 𝑖 checks its current
situation with its original reward 𝑟𝑡,𝑖 . If MI𝑖 (𝑟𝑡,𝑖 ) ≥ 0, the agent
sends a token 𝑥𝑖 = 𝑥

token
> 0 as an acknowledgment request to

all other agents 𝑗 ∈ N𝑡,𝑖 which can be interpreted as a reward.
We assume all tokens to have a fixed value 𝑥

token
which can be

set specifically for particular domains. The request phase could be
interpreted as an opportunity to "thank" other agents for supporting
one’s own monotonic improvement which is common practice in
human society. Note that the fixed token value 𝑥

token
does not

directly reveal an agent’s objective or value function.
In the response phase (Fig. 1b), all request receiving agents 𝑗 ∈

N𝑡,𝑖 check if the request token 𝑥𝑖 helps to monotonically improve
their own situation along with their respective original reward 𝑟𝑡, 𝑗 .
IfMI𝑗 (𝑟𝑡, 𝑗 +𝑥𝑖 ) ≥ 0, then agent 𝑗 accepts the request with a positive
response token𝑦 𝑗 = +𝑥𝑖 which establishes amutual acknowledgment

between agent 𝑖 and 𝑗 for time step 𝑡 . However ifMI𝑗 (𝑟𝑡, 𝑗 +𝑥𝑖 ) < 0,
then agent 𝑗 rejects the request with a negative response token
𝑦 𝑗 = −𝑥𝑖 , because the received request token 𝑥𝑖 is not sufficient to
preserve or to compensate for the situation of agent 𝑗 .

After both communication phases, the shaped reward 𝑟MATE

𝑡,𝑖
for

each agent 𝑖 is computed as follows:

𝑟MATE

𝑡,𝑖 = 𝑟𝑡,𝑖 + 𝑟req + 𝑟res
= 𝑟𝑡,𝑖 +max{⟨𝑥 𝑗 ⟩𝑗 ∈N𝑡,𝑖

} +min{⟨𝑦 𝑗 ⟩𝑗 ∈N𝑡,𝑖
}

(5)

where 𝑟req ∈ {0, 𝑥token} is the aggregation of all received requests
𝑥 𝑗 and 𝑟res ∈ {−𝑥token, 0, 𝑥token} is the aggregation of all received
responses 𝑦 𝑗 . When 𝑟req + 𝑟res = 0 for all time steps 𝑡 , then agent
𝑖 would adapt like a naive learner. Although 𝑟req and 𝑟res could be
formulated as sums over all requests or responses respectively, we
prefer max and min aggregation to prevent single neighbor agents
to be "voted out" by all other agents in N𝑡,𝑖 , thus pushing the inter-
action towards overall cooperation in a completely decentralized
way. Furthermore, the max and min operators keep the reward
𝑟MATE

𝑡,𝑖
bounded within [𝑟𝑡,𝑖 − 𝑥token, 𝑟𝑡,𝑖 + 2𝑥token] which can allevi-

ate undesired exploitation of the PI mechanism, e.g., by becoming
"lazy" to avoid harming other agents while getting rewarded or by
deviating from the protocol such that only positive rewards are
used for learning, e.g., by ignoring responses.

The complete formulation of MATE at time step 𝑡 for any agent 𝑖
is given in Algorithm 2.MI𝑖 is a metric for estimating the individual
monotonic improvement, 𝑉𝑖 is the approximated value function,
N𝑡,𝑖 is the current neighborhood, 𝜏𝑡,𝑖 is the history, and 𝑒𝑡,𝑖 is the
experience tuple obtained at time step 𝑡 . MATE computes and re-
turns the shaped reward 𝑟MATE

𝑡,𝑖
(Eq. 5), which can be used to update

𝜋𝑖 and 𝑉𝑖 according to line 18 in Algorithm 1.

4.3 Discussion of MATE
MATE aims at incentivizing all agents to learn cooperative behav-
ior with a decentralized two-phase communication protocol. Like
Gifting [22], we focus on fixed rewards to simplify evaluation and
to focus on the main aspects of our approach. If 𝑥

token
is smaller

than the highest positive reward, then agents might not be suffi-
ciently incentivized for cooperation. However, if 𝑥

token
significantly

exceeds the highest domain penalty, then single agents may learn
to "bribe" all other agents, thus leading to imbalance. An adaptation
of 𝑥

token
to more flexible values like in LIO [42] is left for future

Algorithm 2 Mutual Acknowledgment Token Exchange (MATE)

1: procedure MATE(MI𝑖 ,𝑉𝑖 ,N𝑡,𝑖 , 𝜏𝑡,𝑖 , 𝑒𝑡,𝑖 )
2: 𝑟req ← 0, 𝑟res ← 0
3: if MI𝑖 (𝑟𝑡,𝑖 ) ≥ 0 then
4: Send acknowledgment request 𝑥𝑖 = 𝑥

token
to all 𝑗 ∈ N𝑡,𝑖

5: for neighbor agent 𝑗 ∈ N𝑡,𝑖 do ⊲ Respond to requests
6: if request 𝑥 𝑗 received from 𝑗 then
7: 𝑟req ← max{𝑟req, 𝑥 𝑗 }
8: if MI𝑖 (𝑟𝑡,𝑖 + 𝑥 𝑗 ) ≥ 0 then
9: Send response 𝑦𝑖 = +𝑥 𝑗 to agent 𝑗
10: else
11: Send response 𝑦𝑖 = −𝑥 𝑗 to agent 𝑗
12: if MI𝑖 (𝑟𝑡,𝑖 ) ≥ 0 then ⊲ If requests have been sent before
13: for neighbor agent 𝑗 ∈ N𝑡,𝑖 do ⊲ Receive responses
14: if response 𝑦 𝑗 received from 𝑗 then
15: 𝑟res ← min{𝑟res, 𝑦 𝑗 }

return 𝑟𝑡,𝑖 + 𝑟req + 𝑟res (𝑟MATE

𝑡,𝑖
as defined in Eq. 5)

work. In contrast to Gifting and LIO, MATE enables penalization
of other agents by explicitly rejecting acknowledgment requests,
which has a negative effect on the requesting agent’s reward, i.e.,
the response term 𝑟res = min{⟨𝑦 𝑗 ⟩𝑗 ∈N𝑡,𝑖

} in Eq. 5.
Algorithm 2 scales with O(4(𝑁 − 1)) in the worst case, ifN𝑡,𝑖 =

D−{𝑖} andMI𝑖 (𝑟𝑡,𝑖 ) ≥ 0 for all agents. In this particular setting, all
agents would send 𝑁 − 1 requests, receive 𝑁 − 1 requests, respond
positively to these requests, and receive 𝑁 − 1 positive responses.
Other PI approaches like LIO or Gifting have a worst case scaling
of O(2(𝑁 − 1)) for sending and receiving rewards because they
lack a response phase. Since MATE scales linearly w.r.t. 𝑁 , it can
still be considered feasible compared to alternative PI approaches
which scale significantly worse [29]. Furthermore, the neighbor-
hood size is typically |N𝑡,𝑖 | ≪ 𝑁 in practice such that the worst
case complexity becomes negligible in most cases.

MATE agents completely rely on local information, i.e., their own
value function approximation 𝑉𝑖 , their own experience tuples 𝑒𝑡,𝑖 ,
and messages exchanged within their local neighborhood N𝑡,𝑖 and
do not require knowledge about other agent’s objectives, or central
instances like market functions or public information as suggested
in [10, 19, 21, 29, 38].

5 EXPERIMENTAL SETUP
5.1 Evaluation Domains
We implemented1 three SD domains based on previous work [10,
22, 26]. At every time step, the order of agent actions is randomized
to resolve conflicts (e.g., when multiple agents step on a coin or
tag each other simultaneously). For all domains, we measure the
degree of cooperation by the efficiency (U ) according to Eq. 1.

Iterated Prisoner’s Dilemma (IPD). IPD is an iterated version
of the 2-player Prisoner’s Dilemma with payoff table shown in Fig.
3a. Both agents observe the previous joint action 𝑧𝑡,𝑖 = 𝑎𝑡−1 at
every time step 𝑡 , which is the zero vector at start state 𝑠0. One nash
equilibrium is to always defect (DD) with an average efficiency of

1Code available at https://github.com/thomyphan/emergent-cooperation.
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𝑈 = −2 − 2 = −4 per time step. Cooperative policies are able to
achieve higher efficiency up to 𝑈 = −1 − 1 = −2 per time step.
An episode consists of 150 iterations and we set 𝛾 = 0.95. The
neighborhood N𝑡,𝑖 = { 𝑗} is defined by the other agent 𝑗 ≠ 𝑖 .

Coin. Coin[N] is an SSD as shown in Fig. 2a and consists of
𝑁 ∈ {2, 4} agents with different colors, which start at random posi-
tions and have to collect a coin with a random color and a random
position [10, 18]. If an agent collects a coin, it receives a reward
of +1. However, if the coin has a different color than the collecting
agent, another agent with the actual matching color is penalized
with -2. After being collected, the coin respawns randomly with
a new random color. All agents can observe the whole field and
are able to move north, south, west, and east. An agent is only able
to determine if a coin has the same or a different color than itself,
but it is unable to distinguish anything further between colors.
An episode terminates after 150 time steps and we set 𝛾 = 0.95.
The neighborhood N𝑡,𝑖 = D − {𝑖} is defined by all other agents
𝑗 ≠ 𝑖 . In addition to the efficiency, we measure the "own coin"

rate 𝑃 (own coin) = # collected coins with same color

# all collected coins
based on the coins

collected by each agent.

Harvest. Harvest[N] is an SSD as shown in Fig. 2b and consists
of 𝑁 ∈ {6, 12} agents (red circles), which start at random positions
and have to collect apples (green squares). The apple regrowth
rate as depends on the number of surrounding apples, where more
neighbor apples lead to a higher regrowth rate [26]. If all apples
are harvested, then no apple will grow anymore until the episode
terminates. At every time step, all agents receive a time penalty of
-0.01. For each collected apple, an agent receives a reward of +1. All
agents have a 7 × 7 field of view and are able to do nothing, move
north, south, west, east, and tag other agents within their view with
a tag beam of width 5 pointed to a specific cardinal direction. If an
agent is tagged, it is unable to act for 25 time steps. Tagging does not
directly penalize the tagged agents nor reward the tagging agent.
An episode terminates after 250 time steps and we set 𝛾 = 0.99.
The neighborhood N𝑡,𝑖 is defined by all other agents 𝑗 ≠ 𝑖 being
in sight of 𝑖 . In addition to the efficiency, we measure equality (E)

(1 minus the Gini coefficient), sustainability (S) (the average time
at which apples are collected), and peace (P) (the average number
of untagged agents at any time step) [26] to analyze the degree of
cooperation in more detail.

5.2 MARL algorithms
We implemented MATE as specified in Algorithm 2 with MI

TD

𝑖
(Eq.

4) and MI
rew

𝑖
(Eq. 3), which we refer to as MATE-TD and MATE-rew

respectively and always set 𝑥
token

= 1. Our base algorithm is an
independent actor-critic to approximate 𝜋𝑖 and 𝑉𝑖 for each agent 𝑖
according to Eq. 2, which we refer to as Naive Learning [10].

In addition, we implemented LIO [42], the zero-sum and replen-
ishable budget version of Gifting [22], and a Random baseline.

Due to the high computational demand of LOLA-PG, which re-
quires the computation of the second order derivative for deep
neural networks, we directly include the performance as reported
in the paper [10] in IPD and Coin[2] for comparison.

-2
0 0Red agent defects Red agent cooperates

Coin[2] Coin[4]

(a) Coin

(b) Harvest (layout used for 𝑁 = 6 and 𝑁 = 12)

Figure 2: SSD environments for evaluation: (a) In Coin, each
agent gets a reward of +1 when collecting a coin. However,
other agents can be penalized with -2 when the collected
coin does not match with the collecting agent’s color. (b) In
Harvest, all agents (red circles) need to collect apples (green
squares) while avoiding to be tagged and exhaustion of all
apples which would prevent regrowth of apples.

5.3 Neural Network Architectures
We implemented 𝜋𝑖 and 𝑉𝑖 for each agent 𝑖 as multilayer percep-
tron (MLP). Since Coin[N] and Harvest[N] are gridworlds, states
and observations are encoded as multi-channel image as proposed
in [11, 17]. The observations of IPD are the vector-encoded joint
actions of the previous time step [10]. The multi-channel images
of Coin[N] and Harvest[N] were flattened, before being fed into
the networks. The output of 𝜋𝑖 has |A𝑖 | (|A𝑖 | + 1 for Gifting) units
with softmax activation. The output of 𝑉𝑖 consists of a single linear
unit. The incentive function of LIO has a similar architecture with
the joint action 𝑎𝑡 (excluding 𝑎𝑡,𝑖 ) concatenated with the flattened
observations as input and 𝑁 − 1 output units with sigmoid activa-
tion. The hyperparameters and architecture information are listed
in Table 1 and further details are in the appendix.

6 RESULTS
For each experiment all respective algorithms were run 20 times
to report the average metrics and the 95% confidence interval. The
Random baseline was run 1000 times to estimate its expected per-
formance for each domain.

6.1 Performance Evaluation
The results for IPD are shown in Fig. 3b. MATE-TD, LIO, and LOLA-

PG achieve the highest average efficiency per step. Both Gifting
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hyperparameter value
𝑥
token

1
discount factor 𝛾 0.95 (0.99 for Harvest[N])
batch size 10 episodes
optimizer ADAM
learning rate 0.001
clip norm 1
number of hidden layers 2
units per hidden layer 64
hidden layer activation ELU

Table 1: Hyperparameters of MATE and the neural networks.

(a) Prisoner’s Dilemma payoffs (b) Efficiency in IPD

Figure 3: (a) Payoff matrix used in IPD (b) Learning progress
of MATE variants, Gifting variants, Naive Learning, and Ran-
dom in IPD. The results of LIO and LOLA-PG are from the
respective papers.

variants, Naive Learning, and MATE-rew converge to mutual defec-
tion, which is significantly less efficient than Random.

The results for Coin[2] and Coin[4] are shown in Fig. 4. In both
scenarios, MATE-TD is the significantly most efficient approach
with the highest "own coin" rate. LIO is the second most efficient
approach in both scenarios. In Coin[2], LIO’s efficiency first sur-
passes LOLA-PG and then decreases to a similar level. However,
the "own coin" rate of LOLA-PG is higher, which indicates that one
LIO agent mostly collects all coins while incentivizing the other
respective agent to move elsewhere. In Coin[4], LIO is more effi-
cient than Random and achieves a slightly higher "own coin" rate
than the other PI baselines. MATE-rew is the fourth most efficient
in Coin[2] (after LOLA-PG and LIO) and Coin[4] (after Random),
but its "own coin" rate is similar to Random. Both Gifting variants
and Naive Learning perform similarly to Random in Coin[2] but are
significantly less efficient than Random in Coin[4].

The results for Harvest[6] and Harvest[12] are shown in Fig. 5.
All MARL approaches are more efficient, sustainable, and peaceful
than Random. In Harvest[6], MATE-TD, LIO, both Gifting variants,
and Naive Learning are similarly efficient and sustainable with
similar equality, while MATE-TD achieves slightly more peace than
all other baselines. In Harvest[12], MATE-TD achieves the highest
efficiency, equality, and sustainability over time while being second
most peaceful afterMATE-rew, which achieves the highest and most
stable level of peace. BothGifting variants are slightlymore efficient,
sustainable, and peaceful than Naive Learning in Harvest[12], while

(a) Efficiency (2 agents) (b) Own coin (2 agents)

(c) Efficiency (4 agents) (d) Own coin (4 agents)

Figure 4: Learning progress of MATE variants, LIO, Gifting
variants, Naive Learning, and Random in Coin. The results
of LOLA-PG are from the paper.

LIO is progressing slowlier than Gifting and Naive Learning, but
eventually surpasses them w.r.t. efficiency, sustainability, and peace.
MATE-rew is the least efficient and sustainable MARL approach
which exhibits less significantly equality than Random. LIO, both
Gifting variants, andNaive Learning first improvew.r.t. to all metrics
but then exhibit a gradual decrease, which indicates that agents
become more aggressive and tag each other in order to harvest all
apples alone, which is known as tragedy of the commons [22, 26].
However, MATE-TD remains stable w.r.t. efficiency, equality, and
sustainability in Harvest[12].

6.2 Robustness against Protocol Defections
To evaluate robustness ofMATE-TD against protocol defections, we
introduce a single defective agent or defector 𝑓 ∈ D which deviates
from the communication protocol defined in Algorithm 2 and Fig.
1 in one of the following ways:

Complete The defector becomes a naive independent learner
which does not participate in the communication rounds by
skipping line 14 and 15 in Algorithm 1. Thus, the defector 𝑓
simply learns with its original reward 𝑟𝑡,𝑓 .

Request The defector 𝑓 does not send any acknowledgment
requests by skipping line 4 in Algorithm 2 and receives no
responses in return. However, requests from other agents
𝑗 ∈ N𝑡,𝑓 can still be received. Thus, the defector’s reward is
defined by 𝑟MATE

𝑡,𝑓
= 𝑟𝑡,𝑓 + 𝑟req = 𝑟𝑡,𝑓 +max{⟨𝑥 𝑗 ⟩𝑗 ∈N𝑡,𝑓

}.
Response The defector 𝑓 can send acknowledgment requests

but ignores all responses by skipping line 13-15 in Algorithm
2. In addition, it can receive requests from other agents 𝑗 ∈
N𝑡,𝑓 . Thus, the defector’s reward 𝑟MATE

𝑡,𝑓
is the same as in the

Request case above.
Note that we focus on variants that avoid penalization by other
agents through the response term 𝑟res = min{⟨𝑦 𝑗 ⟩𝑗 ∈N𝑡,𝑖

} of Eq. 5.
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(a) Efficiency (6 agents) (b) Equality (6 agents) (c) Sustainability (6 agents) (d) Peace (6 agents)

(e) Efficiency (12 agents) (f) Equality (12 agents) (g) Sustainability (12 agents) (h) Peace (12 agents)

Figure 5: Learning progress of MATE variants, LIO, Gifting variants, Naive Learning, and Random in Harvest.

(a) Efficiency (4 agents) (b) Own coin (4 agents)

Figure 6: Performance of MATE, defective MATE variants,
LIO, and Naive Learning in Coin.

In our experiments, we use the notation MATE-TD (defect=𝑋 ) for
the inclusion of a defector 𝑓 using a protocol defection strategy
𝑋 ∈ {Complete, Request, Response} as explained above.

The results for Coin[4] are shown in Fig. 6. All defective MATE-

TD variants are less efficient than MATE-TD but still more efficient
with a higher "own coin" rate than Naive Learning. MATE-TD (de-

fect=Complete) exhibits the least degree of cooperation. MATE-TD

(defect=Response) is slightly more efficient than LIO and achieves a
higher "own coin" rate. MATE-TD (defect=Request) is less efficient
than LIO but its "own coin" rate is higher indicating that agents tend
to refrain from collecting other agents’ coins rather than greedily
collecting them.

The results for Harvest[12] are shown in Fig. 7. All defective
MATE-TD variants perform similarly to MATE-TD without any loss.

6.3 Robustness against Communication Failures
To evaluate robustness against communication failures, we intro-
duce a failure rate 𝛿 ∈ [0, 1) specifying that an agent can fail to send
or receive a message with a probability of 𝛿 . E.g., in the request

(a) Efficiency (12 agents) (b) Equality (12 agents)

(c) Sustainability (12 agents) (d) Peace (12 agents)

Figure 7: Performance of MATE, defective MATE variants,
LIO, and Naive Learning in Harvest.

phase in Fig. 1a, agent 1 could fail to send any request by skipping
line 4 in Algorithm 2 with a probability of 𝛿 . If the requests are sent
successfully, agent 2 or 3 can still fail at receiving agent 1’s request
by skipping lines 6-11 in Algorithm 2 with a probability of 𝛿 . The
response phase in Fig. 1b is modeled analogously.

We evaluate the final training run performance ofMATE-TD and
LIO w.r.t. communication failure rates of 𝛿 ∈ {0, 0.1, 0.2, 0.4, 0.8}
in Coin[4] and Harvest[12]. According to the corresponding neigh-
borhood definitions in Section 5.1, communication in Coin[4] is
global, where all-to-all communication is possible, while commu-
nication in Harvest[12] is local for MATE-TD, where all agents can
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(a) Efficiency (4 agents) (b) Own coin (4 agents)

Figure 8: Performance of MATE, LIO, Naive Learning, and
Random in Coin after 5000 epochs w.r.t. different communi-
cation failure rates.

only communicate with neighbor agents that are in their respective
7× 7 field of view. LIO always uses global communication due to its
incentive function formulation [42]. In addition, we compare with
Naive Learning and Random as non-communicating baselines.

The results for Coin[4] are shown in Fig. 8. MATE-TD and LIO

remain more efficient and cooperative than Naive Learning de-
spite both approaches loosing performance with increasing 𝛿 . The
average efficiency of MATE-TD is always nonnegative, while the
efficiency of LIO decreases below the level of Random, when 𝛿 = 0.8.
The average "own coin" rate ofMATE-TD is always at least 0.5, while
the average "own coin" rate of LIO has a high variance ranging
from 0.3 to 0.4. However, when 𝛿 = 0.8, the average "own coin" rate
of LIO is slightly above 0.3 with significantly less variance, while
still being higher than the rates of Naive Learning and Random.

The results for Harvest[12] are shown in Fig. 9. The performance
of MATE-TD is relatively robust for 𝛿 ≥ 0.4 but significantly drops
when 𝛿 = 0.8. However, MATE-TD still achieves the highest degree
of cooperation w.r.t. all metrics except equality which gets worse
than Random when 𝛿 = 0.8. The cooperation level of LIO decreases
slightly w.r.t. 𝛿 and is higher than Random except for equality which
even falls below the level of Naive Learning when 𝛿 ≤ 0.4.

7 DISCUSSION
We presented MATE, a PI approach defined by a two-phase commu-
nication protocol to mutually exchange acknowledgment tokens
to shape individual rewards. Each agent evaluates the monotonic
improvement of its individual situation in order to accept or re-
ject acknowledgment requests from other agents. MATE is com-
pletely decentralized and only requires local communication and
information without knowing the objective of other agents or any
public information. In addition to rewarding other agents, MATE en-
ables penalization by explicitly rejecting acknowledgment requests,
which has a negative effect on the requesting agent’s reward, i.e.,
the minimization term in Eq. 5.

Our results show that MATE is able to achieve and maintain sig-
nificantly higher levels of cooperation than previous PI approaches
in SSDs like Coin[2], Coin[4], andHarvest[12]. EspeciallyHarvest[12]
emphasizes the capability of MATE to encourage stable cooperation
despite the increased social pressure compared to Harvest[6], where
all alternative PI approaches easily learn to cooperate.

(a) Efficiency (12 agents) (b) Equality (12 agents)

(c) Sustainability (12 agents) (d) Peace (12 agents)

Figure 9: Performance of MATE, LIO, Naive Learning, and
Random in Harvest after 5000 epochs w.r.t. different commu-
nication failure rates.

Estimating the monotonic short-term improvement via MI
rew

𝑖
(Eq. 3) can be beneficial compared to random acting and to some
extent to naive learning in Coin (Fig. 4). However, considering
the monotonic long-term improvement via MI

TD

𝑖
(Eq. 4) leads to

significantly higher efficiency and cooperation w.r.t. various metrics
in all domains, except peace in Harvest[12]. MATE withMI

TD

𝑖
is able

to maintain cooperative behavior, in contrast to other approaches
which become unstable and fall back to more defective strategies
as observed in Coin[2], Coin[4], and Harvest[12] (Fig. 4 and 5).

MATE is suitable for more realistic scenarios, e.g., in adhoc team-
work or IoT settings, where single agents can deviate from the
protocol, e.g., due to malfunctioning or selfishness, and where com-
munication is not perfectly reliable: MATE is not affected by single
protocol defectors in Harvest[12], while its cooperation level de-
creases significantly in Coin[4], where any deviation from the proto-
col can affect the whole MAS (Fig. 6 and 7). The protocol defection
in Coin[4] emphasizes the importance of appropriate penalization
mechanisms as proposed in our reward formulation in Eq. 5. MATE
shows some robustness against communication failures in Fig. 8
and 9, where it is able to maintain its superior cooperation level
even when communication fails with a probability of 80%. The
difference in cooperation compared to LIO is especially evident in
Harvest[12], where MATE only uses local communication w.r.t. the
agents’ local neighborhoods N𝑡,𝑖 . In this case, local failures with a
rate of 𝛿 ≤ 40% do not affect the whole MAS, in contrast to Coin[4],
where the cooperation level already drops when 𝛿 ≥ 10%.

Future work includes a combination of LIO andMATE in order to
exchange tokens of different values and an integration of emergent
communication techniques to create more adaptive and intelligent
agents with social capabilities [9, 31].
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